Difference between revisions of "Analysis A. Aguasca-Cabot lstchain v0.7.X"
Line 11: | Line 11: | ||
** AZ (deg): 180 | ** AZ (deg): 180 | ||
− | + | == DL1 data == | |
− | + | === Real data === | |
* Original DL1a files | * Original DL1a files | ||
Line 29: | Line 29: | ||
* Produced DL1b files | * Produced DL1b files | ||
− | + | === MC data === | |
* Original DL1a files | * Original DL1a files | ||
Line 45: | Line 45: | ||
* Produced DL1b files | * Produced DL1b files | ||
− | + | == Random forest == | |
* LSTCHAIN v0.7.5 | * LSTCHAIN v0.7.5 | ||
* source-dependent, dispnorm | * source-dependent, dispnorm | ||
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/XXXXXXXXX | /fefs/aswg/workspace/arnau.aguasca/scripts/_configs/XXXXXXXXX | ||
− | + | == DL2 data == | |
− | + | == DL3 data == | |
Performed the Dl2 to dl3 stage and IRF production with Seiya's fork of LSTCHAIN. Repository used: https://github.com/aaguasca/cta-lstchain | Performed the Dl2 to dl3 stage and IRF production with Seiya's fork of LSTCHAIN. Repository used: https://github.com/aaguasca/cta-lstchain | ||
Line 76: | Line 76: | ||
} | } | ||
− | + | == High-level analysis == |
Revision as of 11:11, 10 February 2022
Contents
Overview
- Source-dependent analysis using LSTCHAIN v0.7.5, cleaning method tail cut 84 and dynamic cleaning.
- Observations used in the analysis: 5580-5584, 5630-5639 and 5696-5704.
- Results presented in the LST General meeting (Nov. 2021), link here.
Monte Carlo information
- Link to MC files used:
- Particle types: gamma, proton
- ZD (deg): 40
- AZ (deg): 180
DL1 data
Real data
- Original DL1a files
/fefs/aswg/data/real/DL1/{20210809,20210810,20210812}/v0.7.3/tailcut84/dl1_LST-1.Run0XXXX.XXXX.h5
Added dynamic cleaning using srcipt `lstchain_dl1ab.py` by LSTCHAIN v0.7.5.
"dynamic_cleaning": { "apply": true, "threshold": 267, "fraction_cleaning_intensity": 0.03 },
- Produced DL1b files
MC data
- Original DL1a files
/fefs/aswg/data/mc/DL1/20200629_prod5_trans_80/{particle}/{zenith}/{azimuth}/20210506_v0.7.3_prod5_trans_80_zen40deg_local_tailcut_8_4
Added source dependent analysis using script `lstchain_add_source_dependent_parameters.py` and dynamic cleaning using srcipt `lstchain_dl1ab.py` by LSTCHAIN v0.7.5.
"dynamic_cleaning": { "apply": true, "threshold": 267, "fraction_cleaning_intensity": 0.03 },
- Produced DL1b files
Random forest
- LSTCHAIN v0.7.5
- source-dependent, dispnorm
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/XXXXXXXXX
DL2 data
DL3 data
Performed the Dl2 to dl3 stage and IRF production with Seiya's fork of LSTCHAIN. Repository used: https://github.com/aaguasca/cta-lstchain
- IRF: point-like, single-offset
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/RSOph/LSTGeneralMeeting/lstchain_dl3_config.json
- Quality cuts
"EventSelector": { "filters": { "intensity": [100, Infinity], "width": [0, Infinity], "length": [0, Infinity], "r": [0, 1], "wl": [0.1, 1], "leakage_intensity_width_2": [0, 0.2] } }, "DL3FixedCuts": { "fixed_gh_cut": 0.6, "fixed_alpha_cut": 20, "allowed_tels": [1] }