Difference between revisions of "Analysis A. Aguasca-Cabot lstchain v0.9.X AllSky"
Line 101: | Line 101: | ||
== Quality cuts optimization == | == Quality cuts optimization == | ||
+ | Since the AllSky MC is a tailored production than the Fixed MC production, we cannot use high-zenith Crab observations to find the best cuts. Thus, we have to use MC data to find the best cuts for RS Oph. | ||
+ | |||
+ | MC gammas: | ||
+ | |||
+ | |||
+ | Background data: | ||
+ | |||
+ | |||
+ | *Procedure | ||
+ | -Weight the distribution of MC gammas according to the spectral index of RS Oph ($\Gamma = -4$) and randomly select events according to this distribution. | ||
+ | -Compute the efficiency cuts for each energy bin | ||
+ | -For each energy bin, compute the total rate of gammas and background in each energy bin. | ||
+ | -Calculate the number of gammas and background as the rate time the observation time we want for the sensitivity (50 hours) | ||
+ | -Compute the sensitivity | ||
+ | -Find the best cuts | ||
Revision as of 10:38, 19 July 2022
Contents
Overview
- Source-dependent/independent analysis using LSTCHAIN v0.9.6 and the branch "interp_irfs" with last commit e5835d5ab7792cbb528118de9cebe4a60f7802a8. The MC production processed with LSTOSA v0.8.2 using LSTCHAIN v0.9.6
- Cleaning method tail cut 84 and dynamic cleaning. Also, the MC files are tuned to match the NSB in the FoV and the PSF.
- Observations used in the analysis:
Monte Carlo information
- AllSky MC prodution.
- Link to MC files used: /fefs/aswg/data/mc/DL1/AllSky/galsource_min_413_tuned_nsb/...
- - Particle types: gamma diffuse and protons
- - MC prod (deg): galsource_min_413_tuned_nsb
- - Dec band (deg): dec_min_431
- - Other information: MC production through PR in lstMCpipe Github webpage (https://github.com/cta-observatory/lstmcpipe/tree/master/production_configs/20220523_dec_413_tuned_nsb)
- - MC files are tuned to match the NSB in the FoV and the PSF.
DL1 data
- Processed with LSTOSA using LSTCHAIN v0.9.6.
- - Dynamic cleaning and tail cut cleaning with pedestal threshold applied by the the standard parameters using pipeline LSTOSA.
"dynamic_cleaning": { "apply": true, "threshold": 267, "fraction_cleaning_intensity": 0.03 }
Real data
- Parameters for the tail cut cleaning with pedestal threshold
"tailcuts_clean_with_pedestal_threshold": { "picture_thresh":8, "boundary_thresh":4, "sigma":2.5, "keep_isolated_pixels":false, "min_number_picture_neighbors":2, "use_only_main_island":false, "delta_time": 2 }
- Original DL1a files (processed up to DL1 by LSTOSA using LSTCHAIN v0.9.2)
/fefs/aswg/data/real/DL1/{}/v0.9/tailcut84/dl1_LST-1.RunXXXXX.XXXX.h5
MC data
- Tuned NSB
"increase_nsb": true, "extra_noise_in_dim_pixels": 0.937, "extra_bias_in_dim_pixels": 0.323, "transition_charge": 8, "extra_noise_in_bright_pixels": 1.041,
- Tuned PSF
"increase_psf": true, "smeared_light_fraction": 0.175
- Original DL1a files
/fefs/aswg/data/mc/DL1/AllSky/galsource_min_413_tuned_nsb/{TrainingDataset,TestingDataset}/dec_min_413/{particle}/node...
Random forest
- Dispnorm parameterisation
- Source-dependent
- - LSTCHAIN v0.9.6
- - Config file:
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/lstchain_src_dep_tailcut84_config_dispnorm_v0.9.4.json
- - path:
/fefs/aswg/workspace/MC_data_simlink/models/AllSky/galsource_min_413_tuned_nsb_srcdep/dec_min_413/
- Source-independent
- - Processed with lstMCpipe using LSTCHAIN v0.9.6.
- - Path:
/fefs/aswg/data/models/AllSky/galsource_min_413_tuned_nsb/dec_min_413/
DL1 to DL2 data
Real data
- Source-dependent
- - LSTCHAIN v0.9.6
- - Config file:
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/RSOph/analysis_v0.9.6/lstchain_config_srcdep_lstmcpipe_tailcut84_dispnorm_v0.9.6.json
- Source-independent
- - LSTCHAIN v0.9.6
- - Config file:
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/RSOph/analysis_v0.9.6/lstchain_config_lstmcpipe_tailcut84_dispnorm_v0.9.6.json
MC data
- Source-dependent
- - Processed with lstMCpipe using LSTCHAIN v0.9.6.
- - Config file:
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/RSOph/analysis_v0.9.4/lstchain_config_srcdep_lstmcpipe_tailcut84_dispnorm_v0.9.6.json
- Source-independent
- - Processed with lstMCpipe using LSTCHAIN v0.9.6.
- - Config file:
/fefs/aswg/data/models/AllSky/galsource_min_413_tuned_nsb/dec_min_413/lstchain_config_2022-05-23.json
Quality cuts optimization
Since the AllSky MC is a tailored production than the Fixed MC production, we cannot use high-zenith Crab observations to find the best cuts. Thus, we have to use MC data to find the best cuts for RS Oph.
MC gammas:
Background data:
- Procedure
-Weight the distribution of MC gammas according to the spectral index of RS Oph ($\Gamma = -4$) and randomly select events according to this distribution. -Compute the efficiency cuts for each energy bin -For each energy bin, compute the total rate of gammas and background in each energy bin. -Calculate the number of gammas and background as the rate time the observation time we want for the sensitivity (50 hours) -Compute the sensitivity -Find the best cuts
DL3 data selection
- Source-dependent
- - Quality cuts
"EventSelector": { "filters": { "intensity": [50, Infinity], "width": [0, Infinity], "length": [0, Infinity], "r": [0, 1], "wl": [0.1, 1], "leakage_intensity_width_2": [0, 0.2], "event_type" : [32, 32] } }, "DL3FixedCuts": { "fixed_gh_cut": 0.9, "fixed_alpha_cut": 10, "allowed_tels": [1] }
- Source-independent
- - Quality cuts
"EventSelector": { "filters": { "intensity": [50, Infinity], "width": [0, Infinity], "length": [0, Infinity], "r": [0, 1], "wl": [0.1, 1], "leakage_intensity_width_2": [0, 0.2], "event_type" : [32, 32] } }, "DL3FixedCuts": { "fixed_gh_cut": 0.8, "fixed_theta_cut": 0.141, "allowed_tels": [1] }
High-level analysis
- Source-dependent
- - IRF: point-like, single-offset
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/RSOph/XXXX
- - Produced DL3 files
/fefs/aswg/workspace/arnau.aguasca/XXXX
- Source-independent
Analysis results
- High level analysis performed with gammapy-v0.20.1
Alpha plot
- Filters in EventSelector applied:
"EventSelector": { "filters": { "intensity": [50, Infinity], "width": [0, Infinity], "length": [0, Infinity], "r": [0, 1], "wl": [0.1, 1], "leakage_intensity_width_2": [0, 0.2] } }
See section Quality cuts optimization to know more about the justification of the applied cuts.