Difference between revisions of "LST1Analysis MVA"
(→Analysis of LST1 data) |
(→Analysis of LST1 data) |
||
Line 18: | Line 18: | ||
cd cta-lstchain | cd cta-lstchain | ||
conda env create -f environment.yml | conda env create -f environment.yml | ||
− | conda activate lst </pre> | + | conda activate lst |
+ | pip install lstchain==0.7.2 | ||
+ | rm environment.yml | ||
+ | </pre> | ||
Files needed to analyze golden Run 442 (20190527): | Files needed to analyze golden Run 442 (20190527): |
Revision as of 08:45, 14 April 2021
Contents
Location of LST1 data at PIC
- Directory: /pnfs/pic.es/data/cta/LST/Data/ZFITS/
- Web: LST1 ZFITS files on the web
Same user/password as in CTA portal
Location of LST1 at La Palma
- Directory: /fefs/onsite/data
Use cp01/cp02 to copy out data, never the login machine
Run summary info/data-check
- Run-summary web in GAE
LST1 account
Analysis of LST1 data
Donwload LST analysis software cta-lstchain (wrapper that uses centrally supported ctapipe routines)
git clone https://github.com/cta-observatory/cta-lstchain.git cd cta-lstchain conda env create -f environment.yml conda activate lst pip install lstchain==0.7.2 rm environment.yml
Files needed to analyze golden Run 442 (20190527):
- Pedestal run: pedestal_file_run446_0000.fits
- Low level DRS4 calibration: calibration.hdf5
Run directly jupyter notebook
cd cta-lstchain/notebooks jupyter notebook -> select Analyze_real_muon_data.ipynb
Convert example jupyter notebook to python
cd cta-lstchain/notebooks jupyter nbconvert --to python Analyze_real_muon_data.ipynb
Fix path of data, pedestal and calibration and run!
Lines to fix: source = event_source(input_url="../data/LST-1.4.Run00442.0001.fits.fz",max_events=None) pedestal_path="../pedestal/pedestal_file_run446_0000.fits", with HDF5TableReader('../calibration/calibration.hdf5') as h5_table: python Analyze_real_muon_data.py