Analysis A. Aguasca-Cabot lstchain v0.7.X
Revision as of 11:03, 10 February 2022 by AAguascaCabot (talk | contribs) (Created page with "Source-dependent analysis ===== Monte Carlo information ===== * Link to MC files used: ** Particle types: gamma, proton ** ZD (deg): 40 ** AZ (deg): 180 ===== DL1 data ====...")
Source-dependent analysis
Contents
Monte Carlo information
- Link to MC files used:
- Particle types: gamma, proton
- ZD (deg): 40
- AZ (deg): 180
DL1 data
Real data
- Original DL1a files
/fefs/aswg/data/real/DL1/{20210809,20210810,20210812}/v0.7.3/tailcut84/dl1_LST-1.Run0XXXX.XXXX.h5
Added dynamic cleaning using srcipt `lstchain_dl1ab.py` by LSTCHAIN v0.7.5.
"dynamic_cleaning": { "apply": true, "threshold": 267, "fraction_cleaning_intensity": 0.03 },
- Produced DL1b files
MC data
- Original DL1a files
/fefs/aswg/data/mc/DL1/20200629_prod5_trans_80/{particle}/{zenith}/{azimuth}/20210506_v0.7.3_prod5_trans_80_zen40deg_local_tailcut_8_4
Added source dependent analysis using script `lstchain_add_source_dependent_parameters.py` and dynamic cleaning using srcipt `lstchain_dl1ab.py` by LSTCHAIN v0.7.5.
"dynamic_cleaning": { "apply": true, "threshold": 267, "fraction_cleaning_intensity": 0.03 },
- Produced DL1b files
Random forest
- LSTCHAIN v0.7.5
- source-dependent, dispnorm
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/XXXXXXXXX
DL2 data
DL3 data
Performed the Dl2 to dl3 stage and IRF production with Seiya's fork of LSTCHAIN. Repository used: https://github.com/aaguasca/cta-lstchain
- IRF: point-like, single-offset
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/RSOph/LSTGeneralMeeting/lstchain_dl3_config.json
- Quality cuts
"EventSelector": { "filters": { "intensity": [100, Infinity], "width": [0, Infinity], "length": [0, Infinity], "r": [0, 1], "wl": [0.1, 1], "leakage_intensity_width_2": [0, 0.2] } }, "DL3FixedCuts": { "fixed_gh_cut": 0.6, "fixed_alpha_cut": 20, "allowed_tels": [1] }