BLLac2022flare
Contents
BL Lacertae 2022 flare project
General information
- Name of the source: BL Lacertae
- Brief description of the source:
- - Object type : Blazar
- - RA: 22 02 43.3 (hh mm ss), Dec: +42 16 40 (dd mm ss)
- Analysis by:
- Jorge Otero Santos (IAA-CSIC, joteros@iaa.es)
- Daniel Morcuende (IAA-CSIC, dmorcuende@iaa.es)
Data-taking information
- Dates of data-taking:
- Date: 16/09/2022-25/11/2022 (53 h before cuts)
- ZD range (deg): 15-60 deg
- AZ range (deg): 0-60 and 300-360 deg
- Joint observations with MAGIC? : No
- Runs:
- Date: 16/09/2022-25/11/2022 (53 h before cuts)
1 : 2022-09-16 : 9228 to 9232 2 : 2022-09-21 : 9262 to 9268 3 : 2022-09-22 : 9347 to 9350 4: 2022-10-01: 9453 to 9461 5: 2022-10-03: 9544 to 9555 6: 2022-10-15: 9631 to 9635 7: 2022-10-16: 9648 8: 2022-10-17: 9678 to 9685 9: 2022-10-18: 9697 to 9706 10: 2022-10-19: 9729 to 9739 11: 2022-10-20: 9753 to 9761 12: 2022-10-21: 9808 to 9815 13: 2022-10-23: 9836 to 9848 14: 2022-10-24: 9864 to 9873 15: 2022-10-25: 9892 to 9900 16: 2022-10-26: 9921 to 9924 17: 2022-10-27: 9940 to 9944 18: 2022-10-28: 9969 to 9973 19: 2022-10-29: 9993 to 9995 20: 2022-10-31: 10022 to 10029 21: 2022-11-01: 10069 to 10076 22: 2022-11-02: 10193 to 10204 23: 2022-11-13: 10508 to 10512 24: 2022-11-14: 10521 to 10523 25: 2022-11-15: 10586 to 10588 26: 2022-11-16: 10616 to 10620 27: 2022-11-17: 10652 to 10655 28: 2022-11-18: 10827 to 10830 29: 2022-11-19: 10870 to 10872 30: 2022-11-25: 11033 to 11037
Data-quality selection
Used latest version of the data quality selection notebook. Standard configuration + dR/dI cosmics rate @ 422 p.e. = 1.1 Cut of max_diffuse_nsb_std = 2.3 for moon data selection
- Selected dark runs: 104 of 193 runs (29 h)
- Selected moon runs: 30 of 193 runs (8 h)
Monte Carlo information
- Link to MC files used:
- Dark data: /fefs/aswg/data/mc/DL2/AllSky/20230925_v0.10.4_src3_dec3476_4822_tuned/TestingDataset/dec_3476/
- Moon data: /fefs/aswg/data/mc/DL2/AllSky/20240426_v0.10.9_src3_dec3476_4822_tunedNSB/TestingDataset/dec_3476/ (tuned NSBs and cleaning to match that needed for the real data)
DL1 data
Dark data :
Standard data from /fefs/aswg/data/real/DL1/ with version v0.9 and cleaning tailcut84
Moon data :
Moon data reprocessed to produce the DL1b files with the optimal cleaning for moon analysis as calculated with lstchain_dvr_pixselector -f "/fefs/aswg/data/real/DL1/2022XXXX/v0.9/tailcut84/dl1_LST-1.RunXXXXX'.*.h5" Reprocessed using DL1a files produced by LSTOSA (lstchain v0.10.XX) and dl1ab script (v0.7.5)
- original DL1a files
/fefs/aswg/data/real/DL1/2022XXXX/v0.9/tailcut84/dl1_LST-1.Run0XXXX.XXXX.h5
SPECIFY THE CONFIGURATION FOR OPTIMIZING THE CLEANING
- Produced DL1b files
/fefs/aswg/workspace/seiya.nozaki/data/BLLac/v0.7.3/tailcut84_dynamic_v075/DL1_raw/Run0XXXX
High-level analysis
Please put any information about the production of higher level analysis here.
Example
- lstchain to generate source-dep IRF, DL3
- Science Tool: gammapy 0.18.2
- point-like IRF, 1D analysis
Analysis Results
Please place higher-level analysis results (Spectra, SkyMaps, Lightcurves, etc) here.