Analysis A. Aguasca-Cabot lstchain v0.7.X

From my_wiki
Revision as of 11:10, 10 February 2022 by AAguascaCabot (talk | contribs)
Jump to: navigation, search

Overview

  • Source-dependent analysis using LSTCHAIN v0.7.5, cleaning method tail cut 84 and dynamic cleaning.
  • Observations used in the analysis: 5580-5584, 5630-5639 and 5696-5704.
  • Results presented in the LST General meeting (Nov. 2021), link here.


Monte Carlo information

  • Link to MC files used:
    • Particle types: gamma, proton
    • ZD (deg): 40
    • AZ (deg): 180
DL1 data
Real data
  • Original DL1a files
/fefs/aswg/data/real/DL1/{20210809,20210810,20210812}/v0.7.3/tailcut84/dl1_LST-1.Run0XXXX.XXXX.h5

Added dynamic cleaning using srcipt `lstchain_dl1ab.py` by LSTCHAIN v0.7.5.

 "dynamic_cleaning": {
   "apply": true,
   "threshold": 267,
   "fraction_cleaning_intensity": 0.03
 },
  • Produced DL1b files
MC data
  • Original DL1a files
/fefs/aswg/data/mc/DL1/20200629_prod5_trans_80/{particle}/{zenith}/{azimuth}/20210506_v0.7.3_prod5_trans_80_zen40deg_local_tailcut_8_4

Added source dependent analysis using script `lstchain_add_source_dependent_parameters.py` and dynamic cleaning using srcipt `lstchain_dl1ab.py` by LSTCHAIN v0.7.5.

 "dynamic_cleaning": {
   "apply": true,
   "threshold": 267,
   "fraction_cleaning_intensity": 0.03
 },
  • Produced DL1b files
Random forest
  • LSTCHAIN v0.7.5
  • source-dependent, dispnorm
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/XXXXXXXXX
DL2 data
DL3 data

Performed the Dl2 to dl3 stage and IRF production with Seiya's fork of LSTCHAIN. Repository used: https://github.com/aaguasca/cta-lstchain

  • IRF: point-like, single-offset
/fefs/aswg/workspace/arnau.aguasca/scripts/_configs/RSOph/LSTGeneralMeeting/lstchain_dl3_config.json
  • Quality cuts
 "EventSelector": {
   "filters": {
     "intensity": [100, Infinity],
     "width": [0, Infinity],
     "length": [0, Infinity],
     "r": [0, 1],
     "wl": [0.1, 1],
     "leakage_intensity_width_2": [0, 0.2]
   }
 },
 "DL3FixedCuts": {
   "fixed_gh_cut": 0.6,
   "fixed_alpha_cut": 20,
   "allowed_tels": [1]
 }
High-level analysis