LST1School2021 MVA

From my_wiki
Revision as of 16:41, 8 February 2022 by Monicava (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

DL2 analysis[edit]

Software[edit]

  • Running remote notebook in the La Palma IT cluster
ssh cp01
source /fefs/aswg/software/conda/etc/profile.d/conda.sh
conda activate lstchain-v0.8.2
jupyter notebook --no-browser
ssh -NfL localhost:8889:localhost:8889 monica.vazquez@cp01
Open URL of notebook in local browser
  • Install lstchain in your local machine
LSTCHAIN_VER=0.8.3
wget https://raw.githubusercontent.com/cta-observatory/cta-lstchain/v$LSTCHAIN_VER/environment.yml
conda env create -n lst -f environment.yml
conda activate lst
pip install lstchain==$LSTCHAIN_VER
pip install lstmcpipe==0.5.1
  • Install school software/data in your local machine & get data

https://github.com/cta-observatory/2022_01_lstchain_school/blob/main/README.md

conda install -c conda-forge -n base mamba

git clone https://github.com/cta-observatory/2022_01_lstchain_school.git
cd 2022_01_lstchain_school

mamba env create -f environment.yml
mamba activate lst-school-2022-01

rsync -a cp01:/fefs/aswg/workspace/analysis-school-2022/ data/
  • LST1 + MAGIC analysis
ssh cp01
source /fefs/aswg/software/conda/etc/profile.d/conda.sh
conda activate lst-school-2022-01-magic-lst1
jupyter notebook --no-browser
ssh -NfL localhost:8889:localhost:8889 monica.vazquez@cp01
  • GAMMALEARN
cd /Users/monicava/LSTSCHOOL3/2022_01_lstchain_school/gammalearn
mamba env create -f environment_glearn.yml
conda activate glearn
  • ViTables
conda create --name vitables pytables pyqt
conda activate vitables
pip install ViTables 
./ViTables &