Analysis Crab Nebula Performance Paper Dataset w IRF interpolation Priyadarshi

From my_wiki
Jump to: navigation, search

Crab Nebula Performance Paper Dataset[edit]

General information[edit]

  • Name of the source: Crab Nebula
  • Brief description of the source:
    • Pulsar Wind Nebula
    • z = 0
    • RA: 5 34 31.94 (hh mm ss), Dec: +22 0 52.2 (dd mm ss)
    • RA, Dec in deg (ICRS): 83.63308333, 22.015
  • Analysis by Chaitanya Priyadarshi ((IFAE - cpriyadarshi@ifae.es)

Data-taking information[edit]

Same dataset, as used for the LST Performance Paper

Monte Carlo information[edit]

For getting a closer data-MC comparison, we produce MC data along various sky positions (nodes) as a preliminary method to facilitate a better Random Forest model for the reconstruction and to interpolate IRFs from various sky positions to the target position of each Observation Run.

DL1 data[edit]

This includes whether you use LSTOSA, specific versions of lstchain, dllab scripts, cleaning levels, and calibration information.


DL1a files produced by LSTOSA (lstchain v0.9)

  • original real DL1a data
/fefs/aswg/data/real/DL1/{Date}/v0.9/tailcut84/
  • lstchain v0.9 tailcut8-4 (with cleaning based on pedestal RMS, dynamical cleaning)
 /fefs/aswg/data/real/DL1/20220204/v0.9/tailcut84/log/lstchain_config_v0.9.4_from2022onwards_heuristic.json
  • MC nodes: tailcut8-4 (with cleaning based on pedestal RMS), dynamic cleaning, NSB tuning
 /fefs/aswg/data/mc/DL1/AllSky/20221027_v0.9.9_crab_tuned/{Testing, Training}Dataset/

Random forest[edit]

Here we use the TrainingDataset nodes, selected along the declination path (or closer to) of the selected source (Crab Nebula here). The "dec2276" part in the production ID refers to the declination angle of +22.76 deg. In this new RF model production, we include zenith and azimuth pointing parameters as well.

  • lstchain v0.9.13dev source-independent, dynamic cleaning, NSB tuning
 /fefs/aswg/data/models/AllSky/20221027_v0.9.9_crab_tuned/

For IRF interpolation[edit]

Here we create an almost uniform grid of nodes of sky positions for TestingDataset MC, so as to facilitate IRF interpolation in the parameter space of cos zenith and the sin of angle (delta) between the geomagnetic field and the particle shower direction. IRF interpolation is performed using pyirf v0.7.

  • Link to MC DL2 files used:

/fefs/aswg/data/mc/DL2/AllSky/20221027_v0.9.9_crab_tuned/TestingDataset/

  • Particle types: ring-wobble gamma (offset range = [0.3999, 0.4001] deg)

Source pointings Run 2914 7277.png

DL2 data[edit]

The DL2 files of the real data are stored here - /fefs/aswg/workspace/chaitanya.priyadarshi/real_data/AGN/Crab/v09x/tailcut84/DL2/real/src_indep/20221027_v0.9.9_crab_tuned/{Date}

DL3 data selection[edit]

For energy-dependent cuts[edit]

Information about your DL3 data selection.

  • intensity > 50, 80
  • r: [0, 1]
  • wl: [0.01, 1]
  • leakage_intensity_width_2: [0, 1]
  • source-independent
    • gh_efficiency: 0.8 (0.7 for comparison with Analysis in the Performance Paper)
    • theta_containment: 0.8 (0.7 for comparison with Analysis in the Performance Paper)

Off regions Run 2914 7277 std energy edges wo safe en mask 1 off 10 energy bin p dec.png

  • Energy-dependent Gammaness and Theta cut distribution

Gammaness cuts all Run 2914 7277.png Rad max all Run 2914 7277.png

High-level analysis[edit]

  • lstchain Tools to generate source-independent IRF and DL3
  • Science Tool: gammapy 1.0
  • point-like IRF, 1D analysis

For DL3 data reduction to DL4 dataset,

  • OFF regions selected - 1 Wobble
  • Excluded region: RGB J0521+212, circular region with radius 0.3 deg
  • Safe Energy mask for systematics - Yes, 25.1 GeV < E < 40 TeV
  • Energy axes -
    • True: 10 GeV to 100 TeV with 10 bins per decade
    • Reco: 10 GeV to 100 TeV with 10 bins per decade

For spectral analysis,

  • Model used - Log Parabola + EBL (Dominguez)
  • Reference energy used by calculating the decorrelation energy with a Power Law fit, 431 GeV (397 GeV for comparison with Analysis in the Performance Paper)
  • Spectral Fit energy range - 10 GeV to 100 TeV with 10 bins per decade
  • Spectral fit with gammapy default optimization - minuit

For LC,

  • E_min = 100 Gev

Analysis Results[edit]

Theta2 plot[edit]

  • 10 bins per decade in energy

Theta2 counts 0 Crab 117 wob obs Run 2914 to 7277 40 en bins cut 04 std.png Theta2 excess 0 Crab 117 wob obs Run 2914 to 7277 40 en bins cut 04 std.png

Significance map[edit]

Excess map[edit]

Spectral results[edit]

For energy-dependent cuts[edit]

  • Total dataset

Preliminary LC and SED

Model parameters correlation Run 2914 7277 lp ebl dominguez w cust safe en mask min 25.1 GeV 1 off 10 energy bin p dec.png

Model parameters Run 2914 7277 lp ebl dominguez w cust safe en mask min 25.1 GeV 1 off 10 energy bin p dec.png

LC min 100 max 100000 Run 2914 7277 lp ebl dominguez w cust safe en mask min 25.1 GeV 1 off 10 energy bin p dec.png

SED 2 Run 2914 7277 lp ebl dominguez w cust safe en mask min 25.1 GeV 1 off 10 energy bin p dec.png

Comparison with Analysis of Performance Paper[edit]

  • This analysis

Preliminary LC and SED

Model parameters Run 2914 7277 lp ebl d w cust safe en mask min 25.1 GeV 1 off 10 energy bin p dec.png

LC Run 2914 7277 lp ebl d w cust safe en mask min 25.1 GeV 1 off 10 energy bin p dec.png

SED 5 Run 2914 7277 lp ebl dominguez w cust safe en mask min 25.1 GeV 1 off 10 energy bin p dec.png

  • Comparison of SED of Performance Paper (using nearest IRF node and 8 energy bins per decade)

SED comparison IRF interpolation vs nearest IRF node.png

SED comparison IRF interpolation vs nearest IRF node w Fermi.png